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initio calculations lead to 5ir states at 60° with energies 
about 3 eV above the comparable states at 117°, the 
INDO calculations lead to 5x states at 60° with en­
ergies about 0 to 1 eV below the comparable states at 
117°. 

III. Discussion 
The most grievious fault of INDO apparent in our 

calculations on ozone is the strong bias toward closed 
geometries,50 even when unfavorable electron inter­
actions should make small bond angles strictly repul­
sive, e.g., for the 1A1(STT),

 3A2(57r), 1B1(ST), 3B1(STT), 
and 3B2(67r) states. Similar problems with INDO 
have been found previously.51 It appears as if INDO 
does not properly represent the repulsion involved 

(50) Subsequent to submission of this paper, A. K. Q. Siu and E. F. 
Hayes, Chem. Phys. Lett., 21, 573 (1973), published semiempirical HF 
calculations on the open (11AO and ring (21Ai) states of ozone, in which 
they reported that the CNDO/2, INDO, and MINDO approximations 
all favored the ring state by 5 to 10 eV over the open state, in agreement 
with our results. Siu and Hayes also reported ab initio Hartree-Fock 
calculations, leading to the ring state about 0.36 eV above the open 
ground state. However, as shown earlier from ab initio GVB and CI 
calculations, HF wave functions (which exclude electron correlations) 
are biased in favor of the ring state by 1 eV or more, so that the ab initio 
relative energy (0.39 eV) of the ring and open states obtained by Siu 
and Hayes is much smaller than the real spacing between these states. 
Extensive DZ-CI calculations90 indicate that the ring state is 1.57 eV 
above the open ground state. 

(51) M. Froimowitz and P. J. Gans, / . Amer. Chem. Soc, 94, 8020 
(1972); see also T. Morton, Ph.D. Thesis, California Institute of Tech­
nology, 1972. 

Although the absorption spectra of many transition 
. metal systems have been reproduced using a ligand 

field Hamiltonian and 1" basis set,1-3 calculations as­
suming D2d, D2n, or C2, symmetry are not common.4-7 

Hamiltonians for D2n or C2, symmetry and a d" basis 

(1) R.FinkelsteinandJ. H. VanVleck,./. Chem. Phys., 8, 790(1940). 
(2) C. J. Ballhausen, "Introduction to Ligand Field Theory," Mc­

Graw-Hill, New York, N. Y., 1962. 
(3) J. S. Griffith, "The Theory of Transition Metal Ions," Cambridge 

University Press, London, 1961. 
(4) M. Gerloch and R. C. Slade, J. Chem. Soc. A, 1022 (1969). 
(5) A. Flamini, L. Sestili, and C. Furlani, Inorg. Chim. Acta, S, 241 

(1971). 
(6) P. L. Meredith and R. A. Palmer, Inorg. Chem., 10,1049 (1971). 
(7) N. S. Hush and R. J. M. Hobbs, Progr. Inorg. Chem., 10, 259 

(1968). 

when triplet-coupled electrons are forced into close 
proximity. In addition it appears that INDO gives 
rise to 7r bonds that are far too strong. The latter ex­
planation would be consistent with the short bond 
lengths observed for 1Ki(A-K) and the large transition 
energies observed for the Air -*• Sir and A-K -*• 67r transi­
tions (at the calculated equilibrium geometry). Con­
sequently, the use of INDO for calculating equilibrium 
geometries as in conformational studies or reaction 
pathways is very risky, even if correlation effects are in­
cluded. 

Our calculations show that INDO treats the electron 
correlations involved in the GVB(I) wave function 
fairly well, so that using such correlated wave functions 
will cure some of the gross errors encountered when 
INDO is used with the HF method. However, intro­
duction of CI need not improve the energy spectrum 
obtained with INDO and, in fact, may make it worse. 
(See, for example, the reordering of the 57r and 6T 
states after CI.) Nevertheless, despite certain sig­
nificant errors in describing the overall energy spectrum, 
INDO does reproduce many of the energy separations 
properly, e.g., the singlet-triplet splittings of states 
arising from the same configurations. This indicates 
to us that it may be possible to develop a method on the 
order of INDO in complexity that would yield reliable 
results (comparable at least to ab initio MBS calcula­
tions). Work is in progress along these lines. 

set incorporate a maximum of five empirical param­
eters (excluding interelectronic repulsion parameters), 
in contrast to a maximum of three such parameters for 
symmetries with a fourfold axis. Spectra are therefore 
often interpreted assuming the symmetry of a higher 
point group for calculation purposes. Only in certain 
cases can the assumption be justified.8 We present a 
method for the projection of normalized spherical 
harmonic (NSH) Hamiltonians which is applicable to 
all point group symmetries and offers not only the 
possibility of straightforward calculations for noncubic 
as well as cubic symmetries but also the possibility of 

(8) J. S. Griffith, MoI. Phys., 8,217(1964). 
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standardizing correlation procedures. The empirical 
parameters which arise are independent of the coordi­
nate system used for calculations and may be compared 
with parameters from the crystal field9 or angular over­
lap model10 to determine restrictions on parameter 
values. The approach parallels recent developments 
by Schaffer10 and Ellzey.J' 

As illustrated in the interpretation of spectra of three 
nickel(II) systems characterized by C21, effective sym­
metry, a representation of H on a basis symmetry 
adapted to the point group defines relationships be­
tween empirical parameters and experimental observa-
bles thus minimizing the difficulty of the parameter 
fitting procedure. Symmetry-adapted representations 
also minimize computation and provide a point group 
quantum number for identification of calculated energy 
states. A derivation of d" basis functions symmetry 
adapted to point group chains12 terminating with C2v 

is included as are normalized spherical harmonic Hamil-
tonians for all point groups in the chains. Symmetry-
adapted representations for d" configurations with 
n = 1,2, and 3 and G = On, Td, Dih, Civ, DM, D2h, and 
C2„ are tabulated (Appendix). 

Theory 

A transition metal complex with n valence electrons 
is represented by an ^-electron Hamiltonian of the form 

H = H° + H0 (1) 

where H° is the free ion Hamiltonian and 

[H°,Ga] = 0; G0 £ [R(DT (2) 

[R(3)]n is the «th rank inner direct product of the rota­
tion gmup in three dimensions, R(3). Integers L = 
0, 1,2, . . . characterize irreducible representations of 
[^(3)]" and are quantum numbers for H°. Ha repre­
sents the ligand field, where 

[HG,Ga] = 0; Ga G [Gf (3) 

and [G]" is the nth rank inner direct product of a point 
group G. Irreducible representations of [G]", denoted 
(2(G), are quantum numbers for H. For the octahedral 
group, a(0) = Ai, A2, E, Ti, and T2. 

The potential H0 is expanded in terms of tensor op­
erators,10 where 

H0 = £ Pt 
« = i 

Pt = 2^i 2-i "M ^M 
L M 

and the CM
L tensors with M = L, L — 1, . . ., — L are a 

basis for an irreducible representation of RQ). Any 
vanishing of BM

L coefficients is determined not only by 
the symmetry of the environment of the transition metal 
but also by the choice of coordinate system.1Ci 13 Non-

(9) M. T. Hutchings, Solid State Phys., 16, 227(1964). 
(10) S. E. Harming and C. E. Schaffer, Struct. Bonding (Berlin), 12, 

201 (1972), and references therein; C. E. Schaffer, "Wave Mechanics, the 
First Fifty Years," W. C. Price, S. S. Chissick, and T. Ravens-
dale, Ed., Butterworths, London, 1973, p 174; C. F. Schaffer, Struct. 
Bonding (Berlin), 14, 69 (1973). 

(11) M. L. Ellzey, Int. J. Quantum. Chem.,1, 253 (1973). 
(12) F. A. Matsen and O. R. Plummer, "Group Theory and Its Ap­

plications," E. M. Loebl, Ed., Academic Press, New York, N. Y., 
1968, p 221. 

(13) J. L. Prather, Nat. Bur. Stand. (U.S.) Monogr., No. 19 (1961). 

vanishing BU
L coefficients are directly related to ligand 

field parameters to be fitted from experiment. We 
choose to expand P in terms of linear combinations of 
tensor operators which transform according to an ir­
reducible representation of G. The linear combina­
tions 

ITCLTV = E CM
L(LM\raR)0 (5) 

M 

are orthonormal. A degeneracy index R identifies 
components of the irreducible representation GL(G) 
and T distinguishes Q(G) if more than one Q, of the same 
kind is subduced by L. Symmetry adaptation coeffi­
cients (LM\TCIR)G for the octahedral group have been 
tabulated by Griffith.14 

After expansion 

P = E Z AL'\TK^\0
L (6) 

L T 

since only those linear combinations of tensor opera­
tors which transform as A1 (or Ai8) can have non-
vanishing coefficients.J h 15'16 The coefficients AL:r serve 
as empirical parameters to be evaluated from experi­
ment. " Their magnitudes are independent of coordi­
nate system. 

In addition His a spin free Hamiltonian18 where 

[H,Pa
SF] = 0; P0

SF G Sn^ (7) 

and S„SF is the group of permutations on the spatial 
coordinates of the n electrons. The partitions [X] 
of Sn

SF are exact quantum numbers for H and yield 
trie multiplicity quantum number 9Tl = 2 5 + 1 . 

Basis Functions. A representation of H in the 
5™ dimensional spin free vector space VSF(dn) is a func­
tion of the ligand field parameters AL;r and the Racah 
parameters A, B, and C. Although eigenvalues and 
eigenkets can be obtained from a representation of H 
on the \dn:MLM) basis of FSF(d"),19-22 a representa­
tion of H on a basis symmetry adapted to [G]" has cer­
tain advantages. ^11'17'23 Namely, the representation 
is block diagonal since 

{d^L^a^H^-^'L'-^'a'R') = 

8(VKM')t(a,a'WR,R') (8) 

<dn f^L.-r^aRl H\dn -Jx1L' ;rmaR) 

and each block is identified by an irreducible representa­
tion of the point group of interest. Symmetry adapta­
tion coefficients suitable for the projection of [dB; 
^•Ly-T^QR) basis functions for Oh or Dik symmetry 
are readily available.14 Making use of the previously 
tabulated functions we project bases for dn configura-

(14) Reference 3, Appendix 2, Table A19. 
(15) Reference 3, p 202. 
(16) Y. Tanabe and H. Kamimura, / . Phys. Soc. Jap., 13,394(1958). 
(17) B. R. Hollebone, A. B. P. Lever, and J. C. Donini, Mot. Phys., 

22,155(1971). 
(18) (a) F. A. Matsen and M. L. Ellzey, / . Phys. Chem., 73, 2495 

(1969); (b) J. C. Hempel and F. A. Matsen, ibid., 73, 2502 (1969). 
(19) For a discussion of calculation techniques see, for example, (a) 

B. R. Judd, "Operator Techniques in Atomic Spectroscopy," McGraw-
Hill, New York, N. Y., 1963; and (b) ref 3. 

(20) C. W. Nielson and G. F. Koster, "Spectroscopic Coefficients 
for the p™, d", and f Configurations," Technical Press, Cambridge, 
Mass., 1963. 

(2() J. P. Jesson, /. Chem. Phys., 48,161 (1968). 
(22) J. C. Hempel, D. Klassen, W. E. Hatfield, and H. H. Dearman, 

J. Chem. Phys., 58,1487 (1973). 
(23) J. R. Perumareddi, Coord. Chem. ReD., 4, 73 (1969). 
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Table I. Basis Functions and Correlation Table for the Gerade Irreducible Representations of Oh Relevant 
to Chains 9, 10, and 11 Terminating with C21(I) 

Oh 

A i 8 

E8S 
E ee 
A 2 g 

T2e(x>0 
Tig(z) 
T2 g(xz) 

Ti1OO 
T2 g(^z) 
T18(X) 

Dlh 

Aig 
Aig 
Big 
B i , 
B 2 g 

A2g 
E 8 (xz) 
E g M 
E 1 O*) 
E 8 (x) 

* C 4 . or A d ( I ) " or D2J1(I)
6 -

A , 
Ai 
Bi 
B , 
Bi 
A2 

E(xz) 
E M 
EO-Z) 
E(x) 

Ai 
Ai 
B2 

B2 

B, 
A 2 

B(XZ) 

EOO 
E O T ) 
E(x) 

Ag 
A 8 

Ag 
Ag 
Big 
Big 
B 2 g 

B2g 
B3g 
B 3 8 

* C 2 0 ( I ) ' 

A 1 

Ai 
Ai 
Ai 
A2 

A2 

Bi 
Bi 
B 2 

B2 

Bases'* 

R 
(2z 2 - x 2 - v2) 

V 3 ( x 2 - y>) 
(x2 - y*)(y2 - z2)(z2 - x 2 ) 

xy 
S1 

XZ 

O j / 

^z 
S 1 

» / = {£, 2Si, C2(z), 2C2', 2<r,,}. " 7 = [E, 3C2, /, 3*») 
transforms like z but does not change sign under inversion. 

T = [E, C2(Z), <jh(xz), uh(yz)\ ' Reference 27. S2 denotes a function which 

Table II. Basis Functions and Correlation Table for the Gerade Irreducible Representations of Oh Relevant to Chains 9 and 11 
Terminating with C2„(II) or Chain 11 Terminating with C211(III) 

oh -* 

Aig 
E8S 

T2g(x>0 
A 2 g 

EgC 
Tig(z) 
T]1Tl 
T2gT2 

TlgTi' 
T28T2 

D4A 

A i 8 

A i 8 

B 2 g 

Big 
Big 
A 2 8 

EgTi 
EgT2 

EgT1 ' 
EgT2 ' 

— C 4 , or D2I(II)" -

Ai 
Ai 
B, 
B , 
Bi 
A2 

E T 1 

E T 2 

E T 1 ' 

E T 2 ' 

A 8 

A 8 

Ag 
B 1 8 

B 1 8 

B 1 8 

B 2 8 

B 2 8 

B 3 8 

B 5 8 

• can) 6 -

A 1 

A1 

A 1 

A2 

A2 

A2 

B 1 

B 1 

B2 

B2 

• C2 , (III)" 

A 1 

A 1 

A 1 

B 1 

B 1 

B 1 

B2 

B2 

A2 

A2 

Bases'* 

R 
(2z 2 - x 2 - y2) 

xy 
(x 2 - >>2)0*2 - z2)(z2 - x 2 ) 

\ / 3 ( x 2 - y2) 
S1 

( 1 / V 2 X S , - Sv) 
(UV2)(yz + xz) 
(UV2)(SX + Sv) 
(VV2)(yz - xz) 

" II = [E, C2(z), C2(xy), C2(xy), i, ah(xy), ad(xy), ad(xy)} 
C21(III) is not subduced by C4„. d Reference 27. 

> II = (Ti,C2(z), alxy), ad(xy)}. ' III = {E, C2(xy), ah(xy), ad(xy) j ; note 

tions which are symmetry adap ted 1 2 1 7 2 4 to the follow­
ing point group chains. 25~27 

On-

On-

On-

Oh 

On 

D4, 

D41 

D4, 

Td 

• D2d 

• D2n 

Du-

D2, 

' C2v 

' C2 v 

C2 „ 

C2v 

(9) 

(10) 

(H) 

(12) 

(13) 

A chain is an ordering of groups in which each group 
contains the elements of every group lower in the chain 
and is a proper subgroup of every group higher in the 
chain. In these examples On is the head and C28 the 
tail of the chain. Many noncubic molecules of interest 
to transition metal chemists fall into one of these 
chains. The threefold groups are not discussed here 
but can be treated in an exactly analogous manner. 

Each group, a member of chains 9-13, can be denoted 
G(S) where 5 represents the set of octahedral opera­
tions retained by G. For example, three sets of octa­
hedral operations can be retained to generate C2v. 

I = {E,Ci\z),(Tn(xz),<7n(yz)) 

II = {E, C42(z), <7a(xy),crd(xy)\ 

III = {E,C2'(xy),(Tn(xy),<Td(xy)} 

(24) Reference 2, Chapter 1. 
(25) M. Hamermesh, "Group Theory and Its Application to Physi­

cal Problems," Addison-Wesley, Reading, Mass., 1962. 
(26) L. Jansen and M. Boon, "Theory of Finite Groups," Inter-

science, New York, N. Y., 1967. 
(27) G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, 

"Properties of the Thirty-Two Point Groups," MIT Press, Cambridge, 
Mass., 1963. 

Each C2v(S), where S = I , II, or III, retains a C4
2 or C2' 

operation from the 3C2 or 6C2' classes of On, two mu­
tually perpendicular reflection planes whose line of 
intersection is the twofold axis, and the identity opera­
tion. Symmetry operations of On are defined with 
respect to the symmetry axes of an octahedron which 
pass through the ligands of a six coordinate On system. 
A right-handed coordinate system is assumed. When 
the basis of an irreducible representation26 of On, de­
noted 0,(On), is symmetry adapted to chain 10, for ex­
ample, it is also a basis for one or more irreducible 
representations of D4n, D2a, and C21. The matrices 
D(Ga) G Q-(On) for the operations of the octahedral 
group retained by G = D4h, D2d, or C20 have a block 
diagonal form with each irreducible representation of 
G subduced corresponding to one such block. Basis 
functions and correlation tables for the gerade irre­
ducible representations of On symmetry adapted to 
chains 9, 10, or 11 terminating with C28(I) are given in 
Table I. These bases are also symmetry adapted to 
chain 12. Correlation tables are included in Tables II 
and III for a basis symmetry adapted to chain 9 ter­
minating with C21(II), chain 11 terminating with C2s(II) 
or C25(III), and chain 13 terminating with C28(II). Also 
included in Tables I—III are definitions of S for D24(S), 
S = I and II, and D2n(S), S = I and II. 

Symmetry properties of basis elements are sum­
marized as functions of x, y, and z. The D(G0) E 
Q(On) for Q = Ai8, A2g, Eg, Tig, or T2g can therefore be 
reconstructed since by definition26 

Ga<t>i = S Dji(Ga)4>j (14) 
j ' - i 

where BN = {<l>t;i = 1, N] is the basis of Q(On) and 
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Table III. Basis Functions and Correlation Table for the 
Gerade Irreducible Representations of Oh Relevant to Chain 13 

ok 
Ai8 

E8S 
T28OoO 
A26 

Ege 
Ti8Cr) 
TlgTl 

T2gT2 

T18Ti' 
T28T2' 

-* Ti -* 

A1 

E0 
T8OoO 
A2 

Ee 
Ti(z) 
T 1 Tl 

T 2 T 2 

T 1 T l ' 

T 2 T 2 ' 

Du(Il)" 

A, 
A, 
B2 

B, 

B, 
A2 

ET, 

ET 2 

E T / 

Er2 ' 

—*• Civ 

A1 

A, 
Ai 
A2 

A2 

A2 

Bi 
B1 

B2 

B2 

(II)6 Bases" 

R 
(2z2 - x2 - y2) 

xy 
Ov2 - y2)(y2 - z2) 

(z2 - x1) 
V3(x> - y*) 

S1 

(1/V2)(S. - Sy) 
dlV2)(yz •+ XZ) 
(VV2)(SX + Sy) 
(UV2)(yz - xz) 

\\\ = [E, 2S1, 3C2, 2<Ti). 6H = [E, G(z), ad(xy), ad(xy)}-
c Reference 27. 

DJi(Ga) is an element of the matrix D(Ga). Tables I—III 
were obtained by bringing &(Oh) for a previously re­
ported basis27 to the appropriate block diagonal form 
and relating any similarity transformations required to 
basis transformations.26 

Linear combinations of tensor components sym­
metry adapted to O1, and characterized by the symmetry 
of the basis functions given in Table I have been re­
ported previously by Griffith14 for L = 0, 1, . . ., 6. The 
symmetry adaptation coefficients tabulated yield either 
gerade or ungerade functions since the inversion sym­
metry of the projected function reflects the inversion 
symmetry of its tensor components. One-electron 
tensor operators are g if L is even and u if L is odd. 
Components of a Jd^311LM) basis are always g. 

Given L = 2 functions tabulated by Griffith and 
Table I, we deduce 

\Eg6; A lg; A1; A1) = |20) 

|Ege; B18; B2; A1) = -L{122) + [22)} 

[T28(JZ); Eg(yz); E(yz); B2) = //V2{|2l> + |21>} (15) 

IT28(XZ); Eg(.xz); E(XZ); B1) = 1/V2{|2T) - [2I)] 

|T2g(xj); B28; B1; A2) = -//\/2{|22> - |22)} 

where the functions are identified by an irreducible 
representation and degeneracy index for the groups 
On, D4n, D2Ci(I), and C25(I), respectively. Symmetry-
adapted functions for a chain terminating with'C25(II) 
are obtained as linear combinations of the tabulated 
functions. For L = I 

|E80; A1,; A8; A1) = |20> 

|E8e; B18; B18; A2) = 1/V2{|22> + |22)} 

[T28T2; E8r2; B28; B1) = 7s{a|2l) + b\2\)\ (16) 

[T28T2'; E8T2'; B38; B2) = 72{6[2I) + a|21)} 

IT28(Xj); B28; A8; A1) = i/V2{|22> - |22)} 

where a = i + 1 and b = i — 1, and functions are identi­
fied by irreducible representations of On, D4n, D2n(Il), 
and C21(II), respectively. Therefore, given the in­
formation in Tables I—III and previously tabulated14 

symmetry adaptation coefficients for On, \dn;mL,-T^dR) 
basis functions and ligand field operators are readily 
generated for the point group symmetries of interest. 

Hamiltonians. Those d" compounds characterized 

by the point group symmetry of a member of the chains 
terminating with C2„ require ligand field Hamiltonians 
of the following form 

H0= V (17) 

when G = Oh and Td 

H0= V+ V (18) 

when G = D4n, C4v, Z)24(I), and Z)24(II) 

H0 = V + V + V" (19) 

when G = D2n(I) and C2,(I) 

H0 = V + V + V" (20) 

when G = D2n(U), C2J(Il), and C25(III) 

where 

V = Z)e |A l 8 |0 / (21) 

V = DS\Eed\oS + DT\Eed\0k* (22) 

V" = DU\Eet\0h> + Z)K|Eg6|0/ (23) 

V" = Z)M[T28(Xj)I04
2 + ZW|T2g(xj)U4 (24) 

On quantum numbers identify linear combinations of 
tensor operators which transform as A1 (or A18) of G 
(see Table I). A L ; T coefficients (eq 6) are called DQ, 
DS, DT, DU, and DV by analogy to previously de­
fined28 parameters Dq, Ds, and Dt. Although A28 

of On subduces A1 of D2n(I) and C25(I), no functions of 
this form appear in eq 19 since Hamiltonians for d" 
configurations can be projected from even tensors of 
rank four or less,2,3 and irreducible representations of 
Z?(3) with L = 0, 2, 4 do not subduce A2g of On.

3'27 

Symmetry adapted expansions are given in Table IV.14 

Table TV. Operator Expansions Symmetry Adapted" to Oh 

A18I0^-" = C0" 
E 8 S] 0 1

2 = Co2 __ 
E8^o1

2 = (1/V2XG2 + C_2
2) 

T2OoOk2 = (-//\/2)(C2
2 - C_2

2) 
A!g o/ = (7/12)'Ac„4 + (5/24VA(C4* + C_4

4) 
Ese O^ = (-5/1J)1ACV + (7/24)'A(CV + CV) 
E8e o/ = (1/V2XCV + CV) 
lT2OoO|0t

4 = ( - / / A / 2 ) ( G 4 - C2
4) 

° Reference 14. 

The A18 component arising from L = O contributes 
equally to the energy of each state of a d" configura­
tion and is not included in the ligand field operator. 
As indicated, the Hamiltonians for D4n, C45, and D2i 

are indistinguishable. Similarly, the Hamiltonian for 
D2n(I) is indistinguishable from that for C25(I) (see 
Table I). Nonzero matrix elements of V, V, V", and 
V" on a d orbital basis symmetry adapted to the 
appropriate chain, eq 15 or 16, are given in Table V. 
The matrix elements for V and V relate DS, DT, and 
DQ parameters to the previously defined28 parameters 
Ds, Dt, and Dq where 

DQ = 6(2\)lhDq - 7/2(2l)'^Dt (25) 

DT = 7/2(\5)'/2Dt (26) 

DS = -IDs (27) 

(28) Reference 2, p 101. 
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Table V. Nonzero Matrix Elements for Empirical Ligand Field Operators on the d1 Basis Symmetry Adapted to 
C2„(I), C2„(II), and C211(III) 

a(dv(S)) 
. S" . • {d1;2a(OA)/J;2a(C2,(S))|operatorJ|d1;!a'(O0/?';!!a(C2„(5))>-
I II III a(Oh)R Operator1" a'(Oh)R' DQ DS DT DU DV DM DN 

Ai Ai Ai E^ 

Ai E ^ 

Ai Ai E,0 

Ai A2 Bi E,e 

V + V 

V" 

V" 

V + V 

A2 A, Ai T11(Xy) V + V 

B1 

B2 

i(2)'A 

« a r i -Ko)'" 

Ti,(xy) 

/ 1 \ V 2 5 / 1 V A 
E°« KXO " 7 TV i s ; 
^ . , 2 / 1 Y A 2 20/1 YA 

T2,.) V+V + V" T2,.) - I g ) - 1 12(I)- 1(3). 

T 2 , . ) V+V.+ V. T 2 , . ) - | ( 1 ) - 1 ! ? ( ! ) - > 

2 / 1 N1A 1 10/ 1 YA 
Bi B2 T2er2 V+V + V" T ^ - ^ ) -? ^ ) 

2 / 1 N1A 1 10/ 1 Y/» 
B2 A2 T28r2' V+V + V" W - ^ ) -? ^ ) 

5 / 2 Y / ! 

14V15/ 

10/1YA 

" 2 1 W 

i(2)'A 

<3)V. 

(3)'A 

14V15/ 

10/lYA 

2 1 W 

2lVl5/ 

<* Defined in Tables I and II. * Defined by eq 20 and 24. 

Note that in the octahedral limit DQ = 6(21)'ADq. 
Note also that for a Hamiltonian of the form V+-V 
the center of gravity rule holds within the eg and t2g 

levels of a d : system for DS and DT energy components, 
an observation which is independent of the d basis 
used for calculations. See Appendix. 

Six-Coordinate Systems 

Ligand substitutions and angular distortions leading 
to a first coordination sphere characterized by C2„ 
symmetry are summarized in Table VI and Figure 1. 

Table VI. Mixed Ligand Six-Coordinate Systems 
Which Can Exhibit C2, Symmetry 

MA6 
MA4XY 
MA4B2 

MA2B2XY 
MA2B2C2 

MA3B3 
M(A-A)2XY 
M(A-A)2B2 
M(A-A')2B2 

Highest available 
point group symmetry" 

Trans 
Trans 
Cis 
Trans 
Trans 
Cis 
Eauatorial 
Trans 
Trans 
Trans 

oh 
Civ 

Da 
Civ 

Civ 

D2h 
C%V 
C2, 
Civ 

Civ 

Civ 

Possible Ci, 
distortion 
patterns6 

I, II, III 
I, II 
I, II, III 
III 
I 
I 
III 
I 
II 
II, III 
III 

° Corresponds to the symmetry of an octahedral angular con­
figuration. h As defined by Figure 1. 

Although mixed ligand systems may exhibit angular 
distortions, the highest symmetry available to each cor­
responds to the symmetry of an octahedral angular 
configuration. For example, the limiting symmetry 
for trans-MAA is Dih while that for CW-MA4B2 is 
C2t (Table VI). Any distortion of the octahedral angu­
lar configuration lifts the Dih symmetry of the trans 

& <rd (xy) 

Figure 1. Definitions of the angular configuration for (1) Oh 
(axes pass through ligand positions; a\ = a2 = 90°; 8,• = 90°; ipi = 
V̂2 = 90°); (2) CUl) (I = [E, Ci(z), <jh (xz), <r* (yz)}; ligands 5 
and 6 lie on the z axis; ai = a2 = 90°; 0i = 63, S2 = Bi, and 0° < 
0, and Si < 180°; ^1 = ^, = 90°); (3) C2„(II) (II) = [E, d(z), 
crAxy), <r<i(xy)}; ligands 5 and 6 lie on the z axis; 0° < ai = a2 < 90°, 
Bi = 6 for 0° < B < 180°; ^1 = ^2 = 90°); (4) C20(III) (III - {E, 
Ci (xy), (Th,(xy), <id(xy)}; ligands 1, 2, 3, and 4 lie in the xy plane; 
0°<ai ,a j , <18Oo;0,- = 9O°;Oo<^i = fo < 90°). 

system, while the cis system retains C20 symmetry for a 
C2t(III) angular configuration, as defined by Figure 1. 

Parameters suitable for empirical ligand field calcu­
lations on a d" basis are specified in eq 17-24. The 
number of parameters required for each symmetry is 
dictated by the symmetry and the choice to restrict 
consideration to states arising from a d* configuration. 
That is to say 

N1 = E / 
£ = 2,4 

L,Ai (28) 

where fL;Al is the number of times L subduces Ai (or 
Aig) of the point group of interest. However, assuming 
ligand additivity and an average electrostatic effect for 
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Table VII. Nonzero Matrix Elements of the Ci11(I) Hamiltonian for the Triplet States of a d2 Basis Symmetry Adapted to C211(I) 

8(C11(I)) 

A1 

A2 

B1" 

SL;T 

F;l 
pn 
pn 
pn 
F;l° 

Fn 
F/2 
pn 
pn 
pn 
Fn 
Fn 
F;2 

3L';T' 

Fn 
pn 
F;\ 
F/2 
F; l 
F;2 
F/2 
P;\ 
F;l 
F;2 
F, l 
F/2 
F;2 

B 

15 

15 

(d2 

DQ 

0.43644 

0.14548 

-0 .21822 

0.07274 

0.14548 

-0 .21822 

0.07274 

;3L/T3a(C2„(I))|#° 
DS 

-0 .40000 
-0 .34286 

0.11429 

0.20000 
0.17143 

-0 .22131* 
-0 .05714 
-0 .11066* 

+ HC2,a>\d";3L' 
DT 

-0 .12295 

0.18443 

-0 .43033 

0.06148 
0.14286* 

-0 .09221 
0.07143* 
0.21517 

. - /Sf l f /" |"TYl\ 
,7 \l\\^2v\l})/ 

DU 

-0 .25555 

-0 .12778 

0.34641* 
0.29692* 
0.12778 

-0 .09897* 
0.06389 

DV 

0.16496 

0.08248 

0.10648* 
-0 .08248 
-0 .15972* 
-0 .04124 

0.37268* 

°The |d2;3F;la(C2c(I))) for a = A2, Bi, B2 arise from A(OA) = T lg. b The nonzero matrix elements for the 3B2 states are derived from the 
matrix elements tabulated for the 3Bi states using the negative of the starred (*) multipliers and the other multipliers as tabulated. 

different ligands, assumptions implicit in most applica­
tions of empirical crystal field theory,8-10'29 certain sys­
tems require fewer than N1, parameters. 

By relating empirical crystal field parameters9 for 
the six-coordinate molecules in Table VI to the empiri­
cal A L : T parameters, one finds that 

DU = CR1 + Rs) sin2 O1 - (R2 + R4) sin2 O2 

DM = (R1 + Ri) sin (90 - a0 sin2 0 + (29) 

(,R2 + Rs) sin (90 - a2) sin2 6 

where Rt is an empirical radial parameter for ligand i, 
and the angles 6U au and a2 are defined in Figure 1. 
Therefore, DM (and DN) always go to zero when a 
C25(II) or C20(III) system (Table VI) retains an octahe­
dral angular configuration (6 = a = 90°) and ligand 
additivity is assumed. Similarly, DU (and DV) go 
to zero when a TTYWs-MA4XY C211(I) system is charac­
terized by O1 = 90 - 8 and B2 = 90 + 8. In such a 
case H02V has exactly the same form as H0 where G = 
D4h, Civ, and D2i. These compounds may therefore be 
described with a Hamiltonian of higher symmetry than 
C2, and reflect a property previously termed interme­
diate symmetry by Griffith.8 The equatorial (merid­
ional) configuration of a MA3B3 system (C25(I) sym­
metry) can also display a type of intermediate sym­
metry. When the system retains an octahedral angular 
configuration, DS and DT go to zero and the system 
can be described with the parameters DU, DQ, and 
DV 

To demonstrate the utility of this procedure, it is 
applied in the analysis of three nickel complexes whose 
polarized crystal spectra have been published. It is 
a feature of the spectra of noncubic complexes of the 
twofold groups that the selection rules are in general 
not so well obeyed as those for representative examples 
from the fourfold groups. For this reason the assign­
ments cannot be considered so secure; application 
of the tensor Hamiltonian technique will serve to pro­
vide an additional means of verifying assignments 
through correlation of parameter values. 

Octahedral nickel(II) systems (d8) have an orbitally 
nondegenerate 3A28 ground state. Three relatively 
intense bands are observed in the absorption spectrum 
of an octahedral complex and may be assigned to the 
3A215(F) -* 3T2g(F), 3Tlg(F), and 3Tlg(P) transitions of 

(29) G. Maki, J, Chem. Phys., 28,651 (1958). 

increasing energy, respectively. In a complex of C2 „ 
symmetry, the orbital degeneracy of the excited triplet 
states is lifted and there are nine possible spin-allowed 
transitions. The x, y, and z components of the electric 
dipole vector transform as B1, B2, and A1, respectively, 
for C211 symmetry where x, y, and z refer to the sym­
metry axes for C2 c.

30 

D2n(I) and C2„(I). Polarized single crystal electronic 
spectra of bis(diethylenetriamine)nickel(II) chloride 
monohydrate have been reported by Fereday and 
Hathaway.31 The tridentate ligand diethylenetriamine 
(den) coordinates equatorially.32 Secondary nitro­
gens, which lie trans to one another, define a C2 axis 
and the N-Ni-N angle made by the primary nitrogens 
within a den ring is ~162°. Although the nickel(II) 
cation as a whole does not have a C2 axis, polarized 
absorption spectra indicate an effective symmetry 
higher than the C1 crystallographic site symmetry. 
Three absorption bands are observed in each of three 
crystal orientations with the electric field vector es­
sentially along x, y, and z symmetry axes of C211 or 
D2, An assumption of D2h symmetry, suggested 
by Fereday and Hathaway,31 predicts33 the observa­
tion of nine triplet-triplet bands. HD2k{i) is indis­
tinguishable in form from HCl,a) (ecl 19) and the x, 
y, and z components of the electric dipole vector trans­
form as b3u, b2u, and b l u for D2n symmetry.30 

The representation of H(eq 1) for D2n(I) symmetry on 
a basis symmetry adapted to C2c(I) is given in Table 
VII for the triplet states of a d2 configuration. See 
Appendix. Since the trace of a matrix is invariant under 
diagonalization, various combinations of the experi­
mentally observed transition energies are directly re­
lated to traces of blocks of the representation and can 
be used to establish relationships between B, DQ, DS, 
DT, DU, and DV. For example 

jV3DU + J1VbDV = Tr(3B28) - Tr(3B38) (30) 

where Tr(3CJ(D2/,)) refers to the sum of the energies of 
transitions from the ground state to excited triplet 

(30) For a definition of these symmetry axes see (a) character tables 
given in ref 27 or (b) A. B. P. Lever, "Inorganic Electronic Spectros­
copy," Elsevier, Amsterdam, 1968. 

(31) R. J- Fereday and B. J. Hathaway, / . Chem. Soc, Dalton Trans., 
197(1972). 

(32) S. Biagini and M. Cannas, J. Chem. Soc. A, 2398 (1970). 
(33) Note that ref 31 incorrectly assumes the 3A2g(Oi) state to sub-

duce a SBIE(D2A) state. 
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states characterized by the quantum number Q(Du)-
Similarly 

3 6 

JDS+Tl V I DT = ~ Tr(3B2g) + 

1 
Tr(3B38) - Tr(3B18) (31) 

155 - ^ 2>2 4Tr(^)+ITr(3B2 g) + 

1 
Tr(3B38) - 3Tr(3Ag) (32) 

Therefore, when nine triplet-triplet transitions are ob­
served, there are three' independent variables to be 
fitted from experiment: B (or DQ), DU (or DV), 
and DS (or DT). Transitions calculated with B = 
780, DS = - 4 3 5 , DU = -100 , DQ = -32,215, 
DT = 370, DV = 350 cm -1 , and a d2 basis are com­
pared with experimental values for [Ni(den)2]2+ in 
Table VIII. The parameters reported exactly repro-

Table VIII. Calculated and Experimental Spin-Allowed 
Transitions for [Ni(den)2]

2+ 

. Exptl"-

Energy 

11,200 
11,600 
11,600 
18,100 
18,300 
18,600 
28,700 
28,700 
28,900 

Polariza­
tion 

X 

Z 

y 
y 
Z 

X 

X 

Z 

y 

• Assignment 
A4(I) 

3A8 - 'B,g 
Big 

Bj g 

B2g 

Big 

Bsg 
B3g 

Big 

Bjg 

'A 

, 

Ci1(D 

1-» 'Bj 
AJ 
Bi 
Bi 
A j 

B2 

B j 

AJ 
BI 

Calcd6 

energy 

11,659 
11,556 
11,925 
18,077 
18,343 
18,152 
28,688 
28,700 
28,597 

"Reference 31. bB = 780cm"1, DS = -435, DU = -100, 
DQ = -32,215, DT = 370, and DV = 350 cm"1 and ad2 basis. 

duce the 3A8 -— 3Bi8 transition energies as well as the 
trace (or sum) of the 3Ag -— 3B3g transition energies 
and the trace of the 3A8 -»• 3B2g transition energies. 
Although the first excited triplet state is calculated 
to have the same point group quantum number as the 
highest excited triplet state for all parameter sets which 
reproduce the traces, this is not observed experimen­
tally. 

An interpretation of the polarized single crystal 
spectra of [Ni(den)2]2+ assuming D2h symmetry implies 
that the angular distortion revealed by the X-ray struc­
ture study32 does not determine the effective symmetry 
of the system. Assumption of C20(I) symmetry is con­
sistent with the angular distortion and implies only 
that the primary nitrogens of the den ligand are dis­
tinct, which may reflect the small bond length differ­
ence obtained in the X-ray structure determination 
and/or a small deviation in the N-Ni-N angles within 
the two den rings. 

C25(III). Polarized single crystal absorption spectra 
for bis(DL-histidinato)nickel(II) monohydrate have been 
reported by Meredith and Palmer.6 The tridentate 
histidine molecules bond through three inequivalent 
functional groups and coordinate facially.34 Oxygens 

(34) K. A. Fraser and M. M. Harding, J. Chem. Soc. A, 415 (1967). 

from the carboxy group and nitrogens from the a-amino 
group of each ligand lie in a plane with an O-Ni-O 
angle of 100.3° and an 0-Ni-N A angle of 79.7°. The 
two remaining bonds, imidazole nitrogen-nickel bonds, 
deviate from colinearity by 2.4°. The site symmetry 
of the nickel atoms is C2.

34 

Eight of nine possible spin-allowed triplet-triplet 
transitions are observed in x, y, and z polarizations30 

with some of the transitions forbidden (not observed) 
in each polarization. Meredith and Palmer assumed 
C21(III) symmetry, the symmetry of the first coordina­
tion sphere of the nickel ion, in an interpretation of the 
spectra. A full calculation for C25 symmetry was car­
ried out within the d2 configuration using an empirical 
Hamiltonian in the form of eq 4. The coordinate sys­
tem used by Meredith and Palmer to define the tensor 
operators lies with its z axis bisecting the O-Ni-0 angle 
and its x axis bisecting the N A -Ni -0 angle. For this 
choice of coordinate system nonzero BM

L coefficients 
multiply only those CM

L operators with L = 2, M = 0, 
± 2 and L = 4, M = 0, ± 2 , ±4.10<13 It should be 
noted, however, that the coordinate systems with x, y, 
and z labels permuted correspond to Hamiltonians of 
the same form. The coordinate choice is fixed only by 
the assignment of the point group symmetry quantum 
number associated with each calculated energy state. 
That is to say, the form of the projection operators35 

or symmetry adapted basis functions used to determine 
(J(G) reflects the coordinate system choice. Therefore, 
a fitting procedure which reproduces energy level split­
tings by adjustment of BM

L parameters for L = 2, 
M = 0, ± 2 and L = 4,M = 0, ± 2 , ± 4 can be ex­
pected to find a number of equivalent fits. BM

L coeffi­
cients reported by Meredith and Palmer convert to 
DQ = -31504, DS = -1955, DT = 2155, DM = 
3409, and DN = -5149 cm-1. These A U T parameters, 
defined by eq 23, reproduce the energy level splittings 
and assignments given in Table IX (with B = 783 
cm -1) in any coordinate system. 

Table IX. Calculated and Experimental Spin-Allowed 
Transitions for [Ni(DL-his)j] 

Assignment 
CS„(III) 

'Bi — 'AiW* 
- 'Bj 
- 'Aj(y) 
- ' B 2 

- 8BiCz) 
- 3 A J M 

- ' A 2 

— 'Bi(z) 
- 3 B 2 

Cn 1 

6 variables".6 

10,706 
11,300 
11,884 
16,472 
18,848 
19,244 
27,213 
28,751 
29,608 

-Energy, cm"1 

led . 
5 variables' 

10,615 
11,456 
11,649 
16,500 
18,881 
18,692 
27,404 
28,863 
29,588 

Exptl" 

10,600Uz)8 

11 ,400W 
16,500(Xy) 
18,800 (xz) 
19,000 (y) 
27,300 (y) 
28,900 (z) 
29,600 (xy) 

"Reference 6. 6B = 783, DM = 3409, DN = -5149, DS = 
-1955, DT = 2155, and DQ = -31,504 cm"1. ' B = 820, DM 
= 3000 (DN = -3955), DS = -3000, DT = 1859, and DQ = 
— 31,069 cm"1. d Allowed polarization C21. symmetry. "Polariza­
tions observed. 

A representation of H for C25(HI) symmetry on a d2 

basis symmetry adapted^o C25(III) is given in Table X 

(35) S. R. Polo, "National Technical Information Service," U. S. 
Dept. of Commerce, AD282493, 1961. 
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Table X. Nonzero Matrix Elements of the Cu(S) Hamiltonian for the Triplet States of a d2 Basis Symmetry 
Adapted to Civ(S), S = U and IH 

a(C2*(S)) 
Il III 

Ai A1 

Bi" A2" 

A2 Bi 

B2" B2" 

3L;T 

F;\ 
P;\ 
P;l 
P;l 
F;lb 

F;\ 
F;2 
P;l 
P;i 
P;\ 
F;\ 
F;\ 
F;2 

3L' ;T ' 

F;\ 
P;l 
F;\ 
F;2 
F;\ 
F;2 
F;2 
PA 
F;\ 
F;2 
F;\ 
F;2 
F;2 

B 

15 

15 

<d» 
DQ 

0.07274 

0.14548 

-0 .21822 

0.07274 

0.14548 

-0 .21822 

0.43644 

;3L/T3a(C2„(S)|#° 
DS 

0.20000 
0.17143 

-0 .22131* 
-0 .05714 
-0 .11066* 

-0 .40000 
-0 .34286 

-0 .11429 

+ tfC2,<s>|dVZ/ 
DT 

-0 .43033 

0.06148 
0.14286* 

-0 .09221 
0.07143* 
0.21517 

-0 .12295 

0.18443 

DM 

-0 .34641* 
0.19795* 
0.25555 

-0 .02474* 
-0 .03194 

0.12372* 

-0 .25555 

-0 .12778 

' DN 

-0 .05324* 
0.12372 

-0.31944* 
0.16496 
0.10648* 

0.16496 

0.08248 

" The nonzero matrix elements for the 3B2 states are derived from the matrix elements tabulated for the 3Bi (or 3A2) states using the nega­
tive of the starred (*) multipliers and the other multipliers as tabulated. b The |d2,3F;let(C2„(II))) for a = Bi1 A2, and B2 arise from a(Oh) = 
Ti8 . 

for the spin triplet states. See Appendix. The follow­
ing relationships are deduced from Table X 

py^DM + 2i(5)l/!ZW = Tr(3B2) - Tr(3A2) (33) 

5\'/2 

-jDS + ^l 3 I DT + \SB = Tr(3B1) - 3Tr(3A1) (34) 

,DS -DT — 
21 3\ /21 

DQ = 

^Tr(3A2) + ^Tr(3B2) Tr(3B1) (35) 

where Tr(3a(C2„(III)) refers to the sum of the energies 
of transitions from the ground state to excited triplet 
states characterized by a(C2t(III)). When nine spin-
allowed triplet-triplet transitions are observed, the 
energies of the triplet states can be specified with four 
independent variables, for example, B, DM (or DN), 
DS (or DT), and DQ. Transitions calculated with B = 
820, DM = 3000, DN = -3955, DS = -3000, DT 
= 1859, and DQ = —31069 cm - 1 are compared with 
experimental values for [Ni(DL-his)2] in Table IX. This 
fit, which retains the C20 assignments made by Meredith 
and Palmer, exactly reproduces the 3B1 -*• 3B1 and 3B1 

-*• 3A1 transition energies as well as the trace of the 
3B1 -»• 3A2 transitions. Since one 3B1 -*• 3B2 transition 
is not observed experimentally, five variables were 
allowed to vary independently in the fitting procedure. 
The fit compares favorably with that of Meredith and 
Palmer, in which six parameters were varied inde­
pendently. 

A scissoring distortion in the xz plane30 can be mea­
sured in units of 2/3, where ZO-Ni-O = 90° — 2/3 
and Z 0-Ni-NA = 90° + 2/3. Relating AL:r param­
eters to empirical crystal field parameters one finds that 

[cos (4B)]DN = 

[ - sin (2B)] {V5/21D Q + VT/3DT} (36) 

where -2/3 ~ 18° for Meredith and Palmer's fit6 of 
the experimental spectrum and —28 ~ 14° for the fit 
obtained with five independent variables. From the 
X-ray structure determination34 one would expect 
-2(J ~ 10.3°. The AL;r parameters obtained for 

Ni(DL-his)2 therefore not only adequately reproduce 
the absorption spectrum but can be used to predict a 
distortion observed experimentally. Although elec­
tric dipole selection rules for C2, symmetry are not 
strictly obeyed, all predicted transitions are observed. 

Four-Coordinate Systems 

Many ML4 systems exhibit one of the two limiting 
symmetries available to a four-coordinate system: 
Dih (square planar) or Td (tetrahedral).7 Equations 
29 relate empirical crystal field parameters for four-
coordinate systems to parameters DU and DM defined 
by the chains incorporating D4h. With the assumption 
of ligand additivity, DM (and DN) go to zero for the 
D4n angular configuration of CW-MA2B2 (d = a = 90°) 
and the system exhibits intermediate symmetry.8,29 

Similarly, one finds that the D41, angular configuration 
of rra«5-MA2B2 can be described with DQ, DU, DV, 
DS, and DT = 72(5/7)1/!Z>g and the D41, angular con­
figuration OfMA4WUhDS, DQ, and DT= 1I2(SP)1^DQ. 

Projections of ligand position vectors are defined to 
lie on 45° diagonals in the xy plane for Td symmetry in 
contrast to the D4n system, where symmetry axes pass 
through ligand positions. For this reason a C2t(II) 
distortion of the Td configuration is equivalent to a C2„-
(I) distortion of the D4n configuration. Parameters 
which indicate the distortion from Td symmetry arise 
in the first approach while parameters which indicate 
the distortion from D41, symmetry arise in the second. 
DM for chain 13, incorporating Td, is given by 

DM = 2.RA sin2 B1 - 2RB sin2 O2 (37) 

where RA and i?B are the empirical radial parameters 
for ligands in positions 1 and 3 and 2 and 4, respectively. 
Ligand positions are indexed by the spherical coordi­
nates (dh 00 with (Jb1 = 45°, (t>i+1 = <?!>*+ 90°, and O1 

= Bz, B2 — 04- The Td angular configuration of MA2B2, 
characterized by C211(II), can be described with DM, 
DN, and DQ when an assumption of ligand additivity 
holds. 

We have restricted consideration to MA4 and MA2B2 

systems, systems which can exhibit C2„ symmetry and 
which require Hamiltonians and basis functions sym­
metry adapted to chains 9, 10, 11, or 13. The theory 
and techniques outlined are applied to a four-coordi-
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Table XI. Calculated and Experimental Spin-Allowed 
Transitions for Ni(Z-Pr-SaI)2 

Obsd» 

c m - 1 

6,000 

14,280 
17,500 
19,000 

Ad(II) 
3A2 —• *B(xy)b 

*H,xy) 
3B2 
3B1(Z) 
3A2 
zE(xy) 

iignn 

3A2 

C ( H ) 

- 3B1,
 3 B 2 ( ^ ) ' 

3B1,
 3B2OoO 

3A1 
3A2(Z) 
3A2(Z) 
3B1,

 3B2Cr1O 

Calcd energy, 
c m - 1 

910' 382* 
5,796 3,007 
9,078 3,880 

14,208 6,917 
17,572 14,544 
19,076 14,593 

0 References 4 and 36. * Allowed polarization. c B = 835, 
C = 2,700, DS = 2,200, DT = -4 ,982 , and DQ = 20,000 o r r 1 . 
i Reference 4: B = 790, C = 3160, DS = 132, DT = -1350 , and 
DQ = 9947 cm-1 . 

Gerloch and Slade4 report an extensive oriented 
single crystal magnetic susceptibility study of Ni(Z-Pr-
SaI)2 for T > 80°K in which they conclude that the 
effective symmetry of the system is D2d. Magnetic 
susceptibilities were calculated using an empirical crys­
tal field Hamiltonian incorporating spin-orbit and 
Zeeman terms with X ~ —100 cm - 1 and k = 0.4. 
Converting empirical crystal field parameters used in 
the magnetic susceptibility fitting procedure to AL;r 

parameters, one obtains DS = 132, DT = —1350, 
and DQ = 9947 cm -1 . Triplet-triplet transition ener­
gies calculated with these parameters (and B — 790 
cm -1) are compared with experimental values in Table 
XI. It should be noted that the bands at ~17,500 and 

Table XII. Empirical Ligand Field Parameters from Polarized Single Crystal Studies of Nickel(II) Systems 

System 

Ni 2 + : MgO 
Ni(NHa)1(NCS)2 

Ni(DL-Ws)2 

[Ni(den)„]Cl2-HjO 
Ni2+=ZnO 
Ni(«-Pr-sal)2-

Symmetry 

Oh 

Dih 

C(III) 

C ( I ) 
Td 

Did 

B 

815 
847 
783 
820 

780 
795 
790 
835 

DQ 

-22 ,408 
- 2 9 , 8 1 4 
- 3 1 , 5 0 4 
- 3 1 , 0 6 9 

- 3 2 , 2 1 5 
11,135 
9,947 

20,000 

Parameters,' 
DS 

- 7 7 0 
-1955 
-3000 

- 4 3 5 

132 
2200 

DT 

216 
2155 
1859 

370 

-1350 
-4982 

DM 

3409 
3000 

DU 
- 1 0 0 

DN 

-5149 
-3955 

DV 
350 

Ref 

41 
42 

6 
This work 

This work 
41 

4 
This work 

° For energy levels calculated with a d2 basis. 

nate nickel system characterized by an approximately 
tetrahedral configuration. A tetrahedral nickel(II) 
system is expected to exhibit three spin-allowed absorp­
tion-bands, assigned as 3T1(F) -+ 3T2(F), 3A2(F), and 
3Ti(P). In C2v symmetry the orbital degeneracy of the 
states is removed and there exists the possibility of ob­
serving nine triplet-triplet transitions. However, if 
the distortion from Td symmetry is small, the two levels 
arising from the ground state lie at very low energies. 

C2c(II). Polarized single crystal spectra for bis-
(W-isopropylsalicylaldiminato)nickel(II) have been re­
ported by Basu and Belford36 and by Gerloch and 
Slade.4 The conformation of the first coordination 
sphere corresponds very nearly to the C2tJ(II) distortion 
of a tetrahedral configuration.37 Planar isopropyl-
salicylaldimine (Z-Pr-sal) ligands bond through an imine 
nitrogen and a hydroxy oxygen with an 0( l )-Ni-0(2) 
angle of ~125° and a N(l)-Ni-N(2) angle of ~121° . 
The ligand planes intersect at an angle of 82°. The 
system contains discrete molecules characterized by a 
triplet ground state.37'38 

Six bands are observed in trie absorption spectrum 
of Ni(Z-Pr-SaI)2 with the electric field vector parallel 
to b and to c crystal axes.436 One band ( ~ 11,000 
cm - 1) is weak and sharp, characteristic of a spin-for­
bidden band. Another (~22,400 cm - 1) is relatively 
very intense. The four remaining bands (at ~6000, 
14,280, 17,500, and 19,000 cm"1) are of comparable 
intensity, characteristic of spin-allowed d-d bands.39 

(36) G. Basu and R. L. Belford, J. MoI. Spectrosc, 17,167 (1965). 
(37) M. R. Fox, P. L. Oriolo, E. C. Lingafelter, and L. Sacconi, 

Acta Crystallogr., 17,1159 (1964). 
(38) L. Sacconi, P. L. Orioli, P. Paoletti, and M. Ciampolini, Proc. 

Chem. Soc, London, 7,255 (1962). 
(39) L. Sacconi, P. Paoletti, and M. Ciampolini, J. Amer. Chem. Soc, 

85,411(1963). 

19,000 cm - 1 are disregarded in the interpretation of 
data proposed by Gerloch and Slade. Triplet-triplet 
transitions calculated with B = 835, DS = 2200, DT 
= -4982, and DQ = 20,000 cm-1 are also given in 
Table XI. These parameters reproduce all observed 
transitions and preliminary calculations40 indicate that 
the parameters will reproduce the susceptibility data 
for T > 800K with X = 140 cm-1 and k ~ 0.58. The 
assumption of Dia symmetry requires that the imine 
nitrogens and hydroxy oxygens be indistinguishable for 
symmetry purposes. A full polarization study of the 
absorption spectrum has not been done due to the un­
favorable placement of nickel centers in the single 
crystal.37 Ni(Z-Pr-SaI)2 could be characterized by a 
small splitting in the 3A2 -*• 3E bands. In such a case 
the assumption of C2„ symmetry predicts the four ob­
served triplet-triplet bands. One of the bands is for­
bidden in D2i symmetry (see Table XI). The low-lying 
spin-forbidden transition observed experimentally is 
essentially independent of crystal field strength and a C 
value consistent with its observation is included in the 
footnote to Table XI for each interpretation of the ab­
sorption spectrum. 

Discussion 

A L : T parameters for three nickel(II) systems charac­
terized by a C2, effective symmetry are compared with 
parameters for other4142 six-coordinate and four-co­
ordinate nickel systems in Table XII. As indicated, 
the relative magnitudes of DQ parameters for the six-
coordinate species reflect an increase in ligand field 

(40) J. C. Hempel, to be submitted for publication. 
(41) R. Pappalardo, D. L. Wood, and R. C. Linares, Jr., / . Chem. 

Phys., 35,1460(1961). 
(42) A. B. P. Lever, Coord. Chem. Rev., 3,119 (1968). 
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"strength" for ligands which coordinate through nitro­
gen over that of an oxygen ligand in MgO. This ob­
servation tends to support the proposed interpretation 
of the Ni(z'-Pr-sal)2 spectrum which indicates an in­
crease in ligand "strength," as measured by DQ, over 
that of the oxygen ligand in the tetrahedral ZnO matrix. 
The magnitudes of parameters DS and DT for the vari­
ous systems, as well as DM and DN ox DU and DV, 
appear to reflect ligand substitution more sensitively 
than angular distortion. For example, DM for a six-
coordinate C25(II) molecule is found to be much larger 
in absolute magnitude than DU for a C20(I) molecule. 
DM is predicted to correspond to a sum and DU to a 
difference of empirical radial parameters (eq 29). 

If it is assumed that the potential due to the ligands 
is the sum of a potential due to each ligand and that-
similar ligands are indistinguishable, certain deduc­
tions can be made concerning the symmetry of the vari­
ous systems. For example, since DS and DT are non­
zero for Ni(/-Pr-sal)2, the system is not characterized 
by a Ta angular configuration and since DM and DN 
are nonzero for Ni(DL-his)2, the system is not charac­
terized by an On angular configuration. These deduc­
tions do correlate with X-ray structure determina­
tions.34,37 Further, the magnitude of a distortion in 
the first coordination sphere of Ni(DL-his)2 can be de­
duced from A L : T parameters DQ, DT, and DN using a 
relation applicable to all six-coordinate systems char-
terized by C2 „(111) symmetry. 

The nine triplet-triplet transitions of a nickel(II) 
system can be described with three independent param­
eters for C21(I) symmetry and with four independent 
parameters for C21(II) or C25(HI) symmetry. Nine 
triplet-triplet transitions observed for Ni(den)2

2+ were 
fitted with three independent parameters (B, DS, and 
DU), while the eight triplet-triplet transitions observed 
for Ni(DL-his)2 were fitted with five independent param­
eters (B, DQ, DS, DT, and DM). The four triplet-
triplet bands observed for Ni(/-Pr-sal)2 were fitted with 
B, DQ, DS, and DT (with DM = DN = O). For each 
of these systems, all triplet-triplet transitions predicted 
assuming C25 symmetry are observed. Results of this 
study imply that the angular configuration of the first 
coordination sphere determines the effective symmetry 
of the system and that predictions based on an assump­
tion of ligand additivity hold. 

Summary and Conclusion 

The utility of normalized spherical harmonic Hamil-
tonians may be summarized as follows. 

(i) Their adoption would provide a standard and 
systematic procedure for generating ligand field Hamil-
tonians in the noncubic point groups. 

(ii) The scalar parameters generated with these NSH 
Hamiltonians are truly spherical and are therefore in­
dependent of coordinate axis choice. We have chosen 
in this article to expand all the tensor components 
along the same axes, i.e., a right-hand coordinate sys­
tem quantized along the C4(z) octahedral axis, irre­
spective of the symmetry axes of the molecule con­
cerned. In the threefold groups the same choice may 
be made but it may be computationally more favorable 
to utilize a set quantized along d(xyz) (On). In either 
event the magnitudes of the scalar parameters obtained 
will be the same. 

(iii) Clearly within a group of molecules belonging 
to the same point group, the variation of a given param­
eter, such as DS, as a function of the ligand or metal, 
may be compared and contrasted. It may also be use­
ful to include, within this comparison, complexes of 
other stereochemistries whose point groups lie within 
the same subduction chain and whose Hamiltonians 
contain the same tensor component. In this way a 
systematic body of knowledge concerning the noncubic 
point groups can be amassed. Series of DS or DT 
paralleling the spectrochemical series of Dq could be 
generated. These would differ from the spectrochemi­
cal series in that the latter, for a given metal, is a function 
of only one ligand, while the former would be at least 
two dimensional being a function normally of at least 
two ligands. 'For this reason, a melding of this tensor 
technique with the orbital angular overlap model will 
probably prove beneficial.10 

This model provides an alternative to that based on 
the Gerloch and Slade43 Cp parameter. 
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Appendix 

Tabulated Symmetry-Adapted Representations. Ta­
ble V contains the nonzero matrix elements of a repre­
sentation of H, eq 1, for G = Oh, Td, D41,, D2n, D2d, and 
C20 on d1 bases symmetry adapted to C25(I), C25(II), 
and C25(III). To determine which matrix elements are 
required for the point group of interest refer to eq 
17-24 to determine the form of H0. Tables VII and X 
contain the nonzero matrix elements of H for the spin 
triplet states of a d2 basis symmetry adapted to C25(I) 
and C25(III), respectively. Tables VII and X also apply 
to the spin quartet states of a d7 basis. The representa­
tion of HG for d10~n is in each case the negative of the 
representation for d". The representation of H° does 
not change sign. 

(43) M. Gerloch and R. C. Slade, "Ligand Field Parameter," Cam­
bridge University Press, London, 1973. 
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